

An Introduction to Artificial Intelligence and Data Science

MINA SCHÜTZ (speaker)

Junior Scientist Data Science & Artificial Intelligence Center for Digital Safety & Security

AIT Austrian Institute of Technology GmbH Giefinggasse 4 | 1210 Vienna | Austria M +43 664 88390708 <u>mina.schuetz@ait.ac.at</u> | <u>www.ait.ac.at</u>

ALEXANDER SCHINDLER

Thematic Coordinator Datascience Data Science & Artificial Intelligence Center for Digital Safety & Security

AIT Austrian Institute of Technology GmbH Giefinggasse 4 | 1210 Vienna | Austria T +43 50550-2902 | M +43 664 8251454 alexander.schindler@ait.ac.at | www.ait.ac.at

What is Artificial Intelligence?

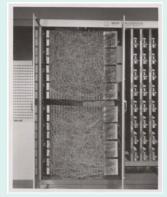
Dartmouth Conference (1956)

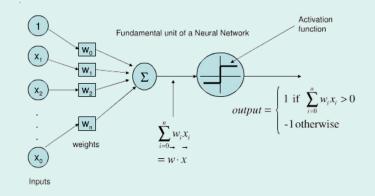
- Naming: "Artificial Intelligence"
- Multi-disciplinary
 - Philosophy (z.B. Descartes, Leibnitz)
 - Logik / Mathematik (z.B. Gödel)
 - Informatik (z.B. Turing, von Neumann)
 - Psychologie / Kognitionswissenschaften (Wissensrepresentationen)
 - Biologie / Neuro-Wissenschaften (Konnektivismus, Neural Networks)
 - Evolution (Genetic Programming)

Academic Discipline / Computer Science

- "Artificial Intelligence (AI) is the part of computer science concerned with designing intelligent computer systems, that is, systems that exhibit characteristics we associate with intelligence in human behavior" (Barr & Feigenbaum, 1981)
 - Understanding language
 - Learning
 - Reasoning
 - solving problems
- Scientific Goal: To determine which ideas about knowledge representation, learning, rule systems, search, and so on, explain various sorts of real intelligence.
- Engineering Goal: To solve real world problems using Al techniques such as knowledge representation, learning, rule systems, search, etc.

What is Artificial Intelligence?



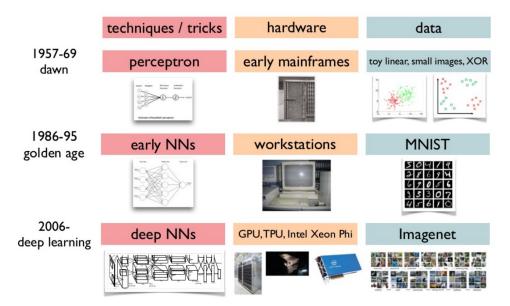

Dartmouth Conference (1956)

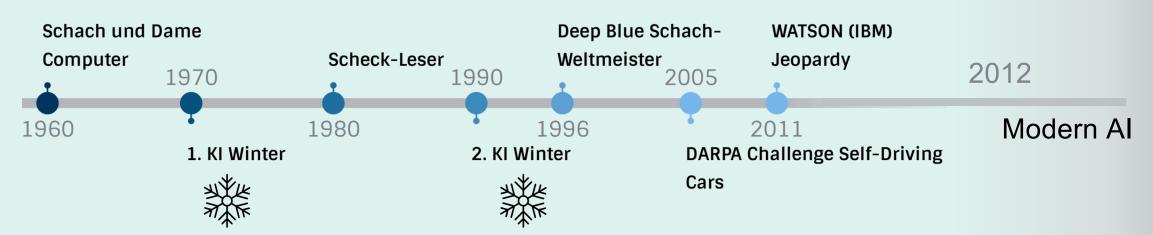
- Naming: "Artificial Intelligence"
- Multi-disciplinary
 - Philosophy (z.B. Descartes, Leibnitz)
 - Logik / Mathematik (z.B. Gödel)
 - Informatik (z.B. Turing, von Neumann)
 - Psychologie / Kognitionswissenschaften (Wissensrepresentationen)
 - Biologie / Neuro-Wissenschaften (Konnektivismus, Neural Networks)
 - Evolution (Genetic Programming)

Perceptron (Frank Rosenblatt, 1958)

Basic component of neural networks

HISTORICAL OVERVIEW




High expectations

- Major investment from the military
- Utopian ideas

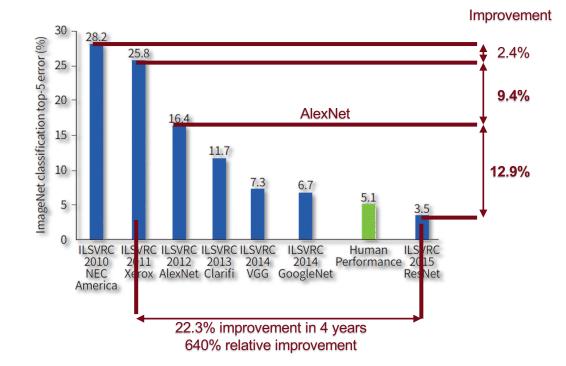
Poor performance

- Slow computers
- Small data sets / Expensive data storage
- Many problems not yet solved
- Too few "experts"

MODERN AI

AlexNet

ImageNet Classification with Deep Convolution. Neural Networks

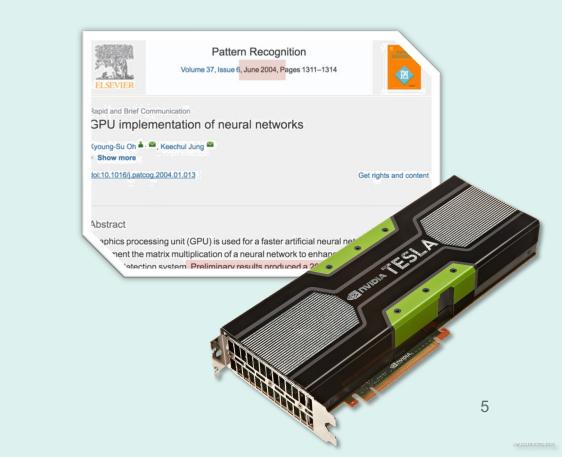

 Alex Krizhevsky
 Ilya Sutskever
 Geoffrey E. Hinton

 University of Toronto
 University of Toronto
 University of Toronto

 riz@cs.utoronto.ca
 ilya@cs.utoronto.ca
 hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the "SVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, mared to 26.2% achieved by the second-best entry.



GPUs

Consumer Hardware

- · Powerful hardware instead of supercomputers
- High computing power also for PhD students

What is Artificial Intelligence?

Definition by High-Level Expert Group on Artificial Intelligence (EU)

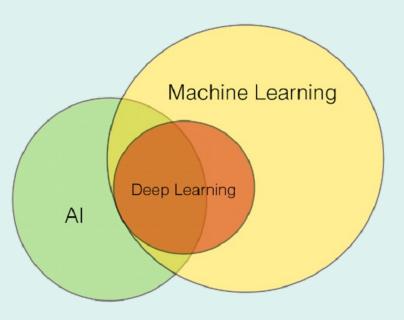
Artificial intelligence (AI) systems are **software** (and possibly also hardware) **systems** designed by humans(2) that, given a **complex goal**, act in the physical or digital dimension by **perceiving their environment through data acquisition**, **interpreting the collected structured or unstructured data**, **reasoning on the knowledge**, or processing the information, derived from this data and **deciding the best action**(s) to take to **achieve the given goal**. Al systems can either use symbolic rules or learn a numeric model, and they can also adapt their behaviour by analysing how the environment is affected by their previous actions

Definition by Austrian Council for Robotics and Artificial Intelligence (AT)

"... artificial intelligence (AI) refers to computer systems that exhibit intelligent behavior, i.e., that are capable of performing tasks that in the past required human cognition and decision-making skills. Artificial intelligence-based systems analyze their environment and act autonomously to achieve specific goals. ... They operate through rule knowledge created by experts or based on statistical models derived from data (machine learning, e.g., deep learning). The term AI includes both pure software, but can also include hardware, such as in the case of autonomous robots. ..."

DEFINITION ARTIFICIAL INTELLIGENCE

Table 1. AI domains and subdomains constituting one part of the operational definition of AI


	Al taxonomy					
	Al domain	Al subdomain				
		Knowledge representation				
	Reasoning	Automated reasoning				
		Common sense reasoning				
		Planning and Scheduling				
Core	Planning	Searching				
Core		Optimisation				
	Learning	Machine learning				
	Communication	Natural language processing				
	Perception	Computer vision				
	rerception	Audio processing				
	Intervation and	Multi-agent systems				
	Integration and Interaction	Robotics and Automation				
Transversal		Connected and Automated vehicles				
Transversat	Services	AI Services				
	Ethics and Philosophy	AI Ethics				
	Lenics and Fintosophy	Philosophy of AI				

Samoili, S., López Cobo, M., Gómez, E., De Prato, G., Martínez-Plumed, F., & Delipetrev, B. (2020). Al Watch Defining Artificial Intelligence. Publications Office of the European Union.

Machine Learning

- Methods which leverage data to improve performance on some set of tasks
- Statistical Machine Learning is dominant

Machine Learning vs. Deep Learning Example: Object Detection

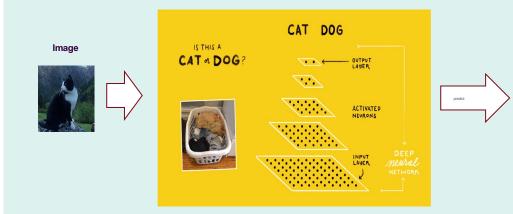
Traditional Computer Vision

- Image features are defined by experts and extracted automatically
- Machine learning model trained on these features to recognize objects

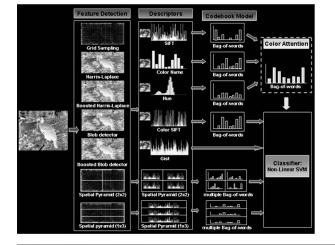
image

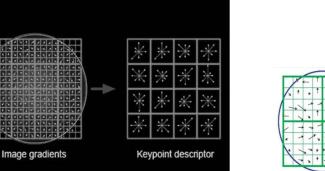
visual words

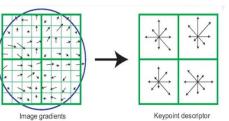
dense keypoints


histogram

Ahuja, Sarthak, and Anchita Goel. "Scene Recognition using Bag-of-Words."




Deep Learning


- Model learns features directly from sample data
- End-to-End training/prediction

Cat / Dog?

SIFT descriptors

¥ ¥ ¥ Y

tiling

vocabulary

spatial histogram

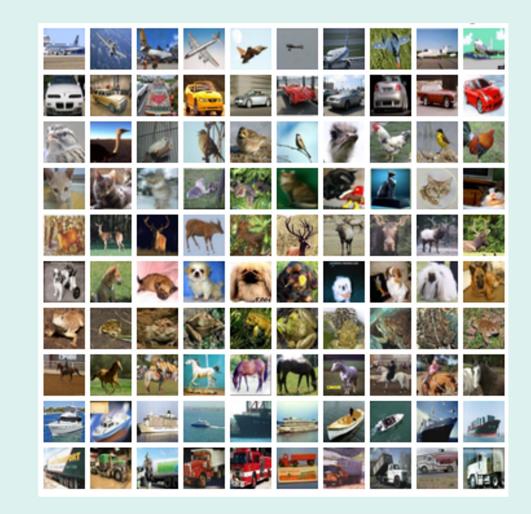
hha

8

DEEP LEARNING REQUIRES DATA

Learning by examples

- Deep Learning requires a lot of diverse data to recognize the relevant features of an object.
 - Different dog breeds, car brands, bird species, clothing, etc.


Overfitting

- If a model "sees" only red cars, it assumes that cars are red.
- If the training data is not diverse enough, it cannot generalize to "unseen" data ("it does not recognize blue cars")

Problems

- Bias: Annotator's bias, prejudices, stereotypes, etc. are reflected in the annotation / data sampling process
- Personal Data: Identifying information in text, image, sound.
 - → Anonymizing data, synthetic data
- Ethical implications: What data may be used (e.g., skin color, religion, sexual orientation, consumer behavior, etc.)?
 - → Ethics guidelines, legal guidelines

DATA SCIENCE

Science in dealing with data / handling data

- "Data Science" originates in the 1960s
 - importance of statistical data analysis for an understanding of data was foreseen in an article¹ in 1962
- Gained increased importance with "Big Data"

Focus:

- Not on the data itself
- rather on the way in which the data is
 - processed, prepared, analysed
 - translated into decisions
- Data science is concerned with
 - purpose-oriented data analysis
 - systematic generation of decision-making aids, tools and bases
 - to achieve competitive advantages

Conceptual Framework	Introduction to Data		
Data Collection	Data Discovery and Collection		
	Evaluating and Ensuring Quality of Data and Sources		
Data Management	Data Organization		
	Data Manipulation		
	Data Conversion		
	Metadata Creation and Use		
	Data Curation, Security and Re-Use		
	Data Preservation		
Data Evaluation	Data Tools		
	Basic Data Analytics		
	Data Interpretation (Understanding Data)		
	Identifying Problems Using		
	Data Visualization		
	Presenting Data (Verbally)		
	Data Driven Decisions Making (DDDM)		
Data Application	Critical Thinking		
	Data Culture		
	Data Ethics		
	Data Citation		
	Data Sharing		
	Evaluating Decisions based on Data		

Abbildung 1: Data-Literacy-Kompetenzen nach Ridsdale et al.

Data Literacy und Data Science Education: Digitale Kompetenzen in der Hochschulausbildung. Policy Paper der Präsidiums-Task-Force "Data Science" der Gesellschaft für Informatik e.V. in Zusammenarbeit mit Vertretern der Deutschen Mathematiker-Vereinigung e.V., der Deutschen Physikalischen Gesellschaft der Gesellschaft Deutscher Chemiker e.V.

INTERSECTION: AI - DATA SCIENCE

- Huge overlaps in application of
 - Machine Learning
 - Data driven Modelling
- Data Science contributions to AI
 - Data collection, management, evaluation, application
 - Data literacy
- Al contributions to Data Science
 - Increased perceptual modelling
 - Complex cognitive task solving
 - Better predictions
 - High-level information extraction

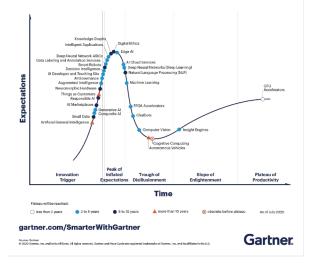
Abbildung 3: Entwurf eines Data-Literacy-Kompetenzmodells

Data Literacy und Data Science Education: Digitale Kompetenzen in der Hochschulausbildung. Policy Paper der Präsidiums-Task-Force "Data Science" der Gesellschaft für Informatik e.V. in Zusammenarbeit mit Vertretern der Deutschen Mathematiker-/ereinigung e.V., der Deutschen Physikalischen Gesellschaft e.V. und der Gesellschaft Deutscher Chemiker e.V.

AI – AS A HYPE-TERM

Artificial Intelligence ...

- ... Industry Interpretation
- Artificial Intelligence ⇔ Machine Learning ⇔ Automation


... Public Administration

• Artificial Intelligence ⇔ Digitalization New

... Advertisement

- The next Superlative
- Smart, Intelligent, ...

Hype Cycle for Artificial Intelligence, 2020

AUSTRIAN INSTITUTE OF TECHNOLOGY

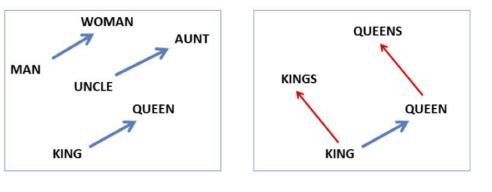
Artificial Intelligence is ...

... a political issue

- Hype Term
 - · Associated with progress, innovation, etc.

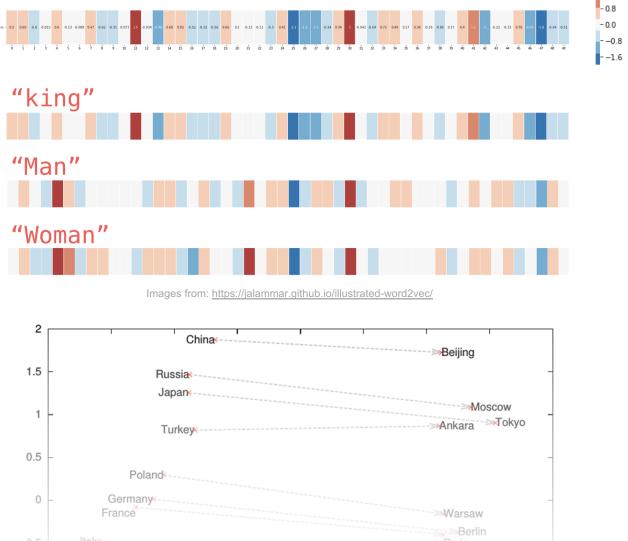
... heavily misused

- · Everyone has a best suiting definition of AI
- Advertisement, PR Departments, etc.


... BUT, a promising technology

- Currently delivers impressive results
- Potential application in many areas

ChatGPT, GenAI, Large Language Models In a Nutshell

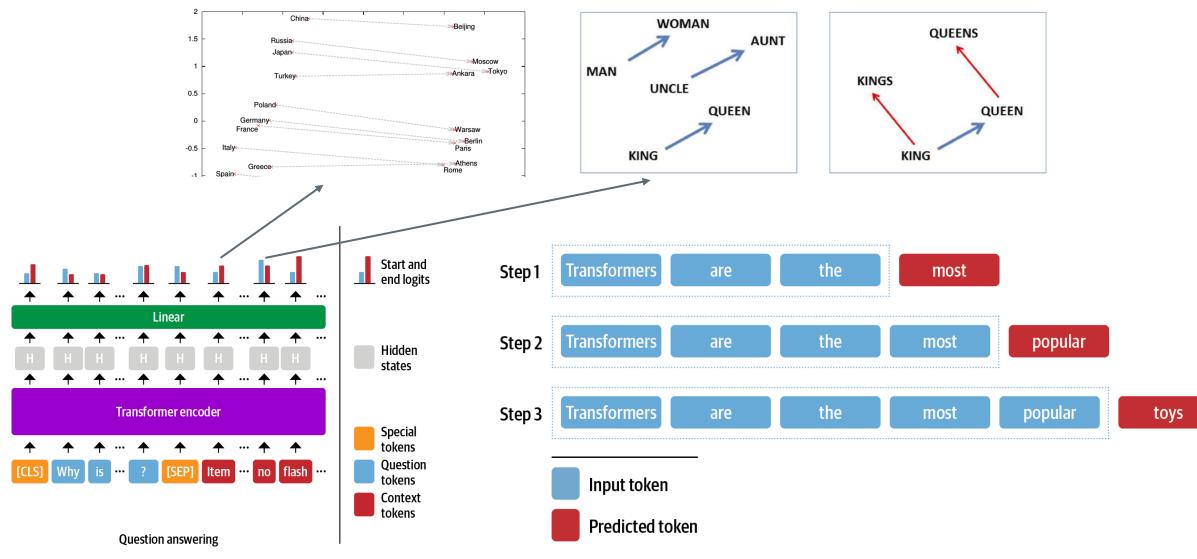

vector('king') - vector('man') + vector('woman') ~ vector('queen') vector('Paris') - vector('France') + vector('Italy') ≈ vector('Rome')

TEXT EMBEDDINGS

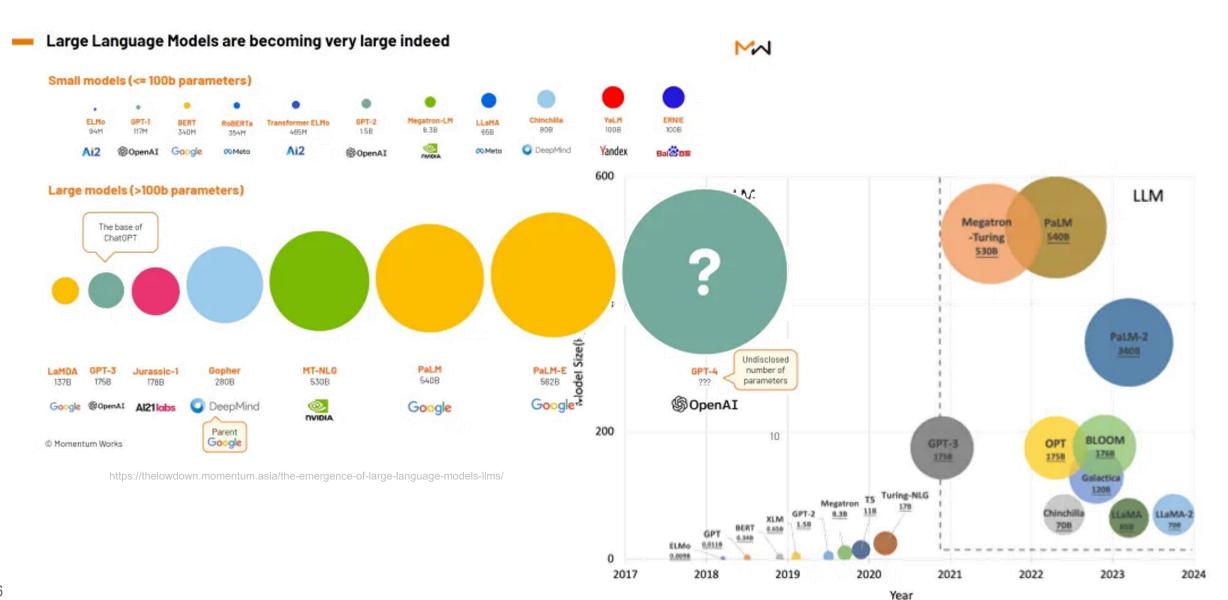
- **Embeddings** convert content (images, ٠ words, sentences, etc.) to a vector in a high-dimension space.
- **Machine Learning** ٠

12.02.24

= linear algebra + vectors, matrices, tensors



-1.6


Generative AI / ChatGPT

LARGE LANGUAGE MODELS

https://medium.com/@yousra.aoudi/large-language-models-in-healthcare-a-new-frontier-7f25ff421568

Why do we need AI Ethics? A Case Study

TRADITIONAL COMPUTER SCIENCE

FILME	EVENTS	CLUB	KINOS	NEWS	KINO MIETEN		Suche	C
	Vorstellur	ng wählen	📕 Si	tzplätze wähl	en 🔗 Kaufen / Re	eservieren	Bestätigun	
VORSTE AKROPC	PLÄTZE	R - MONSIE			/4	KARTEN	Karten gesamt:	
APOLI	O - DAS KIN	O - SAAL 4					29. MÄRZ 2023 -	17:15 UHR
	_	BILDWAND						
1 2 3								
4 5 6								
7 8 9)000)000)000					
10]000					
Fre	i 🧧 Gewäh	nlt = Bel	egt					
Bitte be	eachte, dass de	r Saalplan ni	cht maßstabs	getreu darges	tellt wird.			
	ige Vorstellung 2023 - 18:15					E	Nächste s sind keine späteren Vorstellur	Vorstellung ≯ igen verfügbar.
ACHTUN		Bitte gib deir	ne E-Mail-Adr	esse an, um e	in Ticket zu kaufen ode	er logge dich ein.	E-Mail-Adresse	2

Software Engineering for traditional CS projects ...

... Requirements Engineering

• Clear expectations

... SW Architecture

• Well established practices

... SW Management Process

• Iterative, Agile, CI/CD

... SW Maintenance

CI/CD, fast debugging

TRADITIONAL COMPUTER SCIENCE

FILME	EVENTS	CLUB	KINOS	NEWS	KINO MIETEN		Suche	۹
	Vorstellur			tzplätze wähle		ervieren	Bestätigung)
VORSTE	PLÄTZE ILUNG LIS BONJOU MACHT URL	R - MONSIE		CHRITT 2	/4	KARTEN	Karten gesamt:	
APOLI	.0 - DAS KIN	0 - SAAL 4					29. MÄRZ 2023 - 17	:15 UHR
	_	BILDWAND						
1 2 3								
4					Error	C 2	211	
5							.314	
7								
8								
9 10								
Fre	i 🧧 Gewäh	ilt = Bel	egt					
Bitte be	achte, dass de	r Saalplan ni	cht maßstabs	getreu darges	tellt wird.			
	ige Vorstellung 1023 - 18:15					E	Nächste Vo s sind keine späteren Vorstellunge	
ACHTUN		Ditte a''	- F.M. 14.1		in Ticket zu kaufen oder		E-Mail-Adresse	

... SW Risk Management

- Calculable
 - E.g., tickets not sold \rightarrow 10€ loss
- Impact on society?
 - Low
- Impact on personal life
 - Low
- Impact on hosting company
 - Middle to low
- Impact on developing company
 - Middle to low

AI PROJECTS

VORARLBERG ONLI

VOL.AT M

Home Gemeinde TIPP geben News Sport LIVE Service Freizeit

ÖVP bremst Mietpreisbremse aus

POLITIK / 22.03.2023 • 17:47 Uhr / 7 Minuten Lesezeit

Mieten wird abermals teurer. ÖVP und Grüne konnten sich auf keine Mietpreisbremse einigen. APA/EVA MANHART

Stattdessen kommt als Kompromiss eine einmalige Wohnbeihilfe von etwa 200 Euro. Wer darauf Anspruch hat, setzen die Bundesländer fest.

WIEN Es kommt keine Mietpreisbremse. Das ist seit Mittwoch klar.

Software Engineering for Al projects ...

- ... Requirements Engineering
- Complex
- runaway expectations

... SW Architecture

- Wide, complex and relative new field
- · Best practices not yet widely incorporated into teaching

... SW Management Process

Best practices not yet widely incorporated into teaching

... SW Maintenance

Slow and difficult debugging

AI PROJECTS

Home Gemeinde TIPP geben News Sport LIVE Service Freizeit

ÖVP bremst Mietpreisbremse aus

POLITIK / 22.03.2023 • 17:47 Uhr / 7 Minuten Lesezeit

Mieten wird abermals teurer. ÖVP und Grüne konnten sich auf keine Mietpreisbremse einigen. APA/EVA MANHART

Stattdessen kommt als Kompromiss eine einmalige Wohnbeihilfe von etwa 200 Euro. Wer darauf Anspruch hat, setzen die Bundesländer fest.

WIEN Es kommt keine Mietpreisbremse. Das ist seit Mittwoch klar.

... Al Systems Risk Management

Extremly difficult to calculate

- multiple inter-disciplenary impacts
- Competences often not covered by executing institutions (especially KMUs)
- Knowledge about AI System management requirements not consolidated (AT, EU)
 - → difficult to estimate vendor/outcome reliability

Impact on society

- High to very high, e.g.
 - violation of personal rights
 - IT personel defining classification systems → becomes new reality/truth
 - Loss of trust in promising technology

Impact on personal lifes

- High to very high
- E.g., damaged reputation, credits not granted
- Impact on hosting company
 - High
 - High visibility
 - Damaged reputation
 - Legal consequences

Impact on developing company

- High
- Damaged reputation
- Loss of funding, future comissioning
- Legal consequences

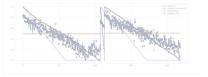
HIGH AIMS

Misinformation vs. Disinformation

- Intentionally spreading misleading information
 - How discreminate intention from lack of knowledge?
- Al Systems needs vast amounts of (personal) data to decide
 - Legal aspects
 - Ethical aspects
 - Do we want to become transparent for a computer system?
- Personal & Fundamental rights
 - Free speech, express opinion
- Often even for humans difficult to decide
 - We are thus careful in formulating our answer
 - Not to hurt anyone involved
 - We can say "I don't know"

Telegram: "Tent city spotted in Burgenland. Could accommodate 5000 migrants"

Background knowledge: "Tent hotel" Nova Rock Festival Nickelsdorf

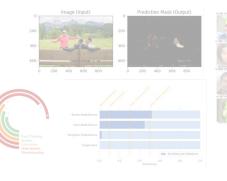

Data Science & Artificial Intelligence

Center for Digital Safety & Security

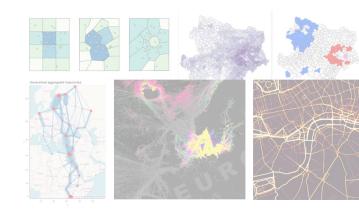
Predictive Analytics

Thank You!

Our other research fields:


Multimedia Forensics Civil Security

Weight Obtaction (in Terr)



Disinformation Detection

Spatial Data Science

MINA SCHÜTZ (speaker)

Junior Scientist Data Science & Artificial Intelligence Center for Digital Safety & Security

AIT Austrian Institute of Technology GmbH Giefinggasse 4 | 1210 Vienna | Austria M +43 664 88390708 mina.schuetz@ait.ac.at | www.ait.ac.at

ALEXANDER SCHINDLER

Deputy Head of Competence Unit Data Science & Artificial Intelligence Center for Digital Safety & Security

AIT Austrian Institute of Technology GmbH Giefinggasse 4 | 1210 Vienna | Austria T +43 50550-2902 | M +43 664 8251454 alexander.schindler@ait.ac.at | www.ait.ac.at