International Workshop by WINS Introduction to the Role of AI in Strengthening the Security of Nuclear Facilities

6-8 February 2024, Vienna, Austria

Proposal and Development of Methods for Detection of Malicious Acts

Kazuyuki Demachi Associate professor, Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo



https://www.demachilab.org/

1. Introduction	Page 4-6		
2. Methods for detection of malicious actions	Page 7-23		
3. Experimental results	Page 24-30		
4. GTAutoAct	Page 31		
5. Conclusion	Page 32		

<u>History</u>

- 1997 March: Graduate the doctor course of Department of System Innovation, School of Engineering, the University of Tokyo (Doctor Degree of Engineering)
- 1997 March-1998 April: Assistant of Nuclear Engineering Research Laboratory, School of Engineering, the University of Tokyo
 1998 May-2000 March: Lecturer of Nuclear Engineering Research Laboratory, School of Engineering, the University of Tokyo
 2000 April-2012 March: Associate professor of Nuclear Professional School, School of Engineering, the University of Tokyo
 2012 April-present: Associate professor of Department of Nuclear Engineering and Management, School of Engineering, the University of Tokyo

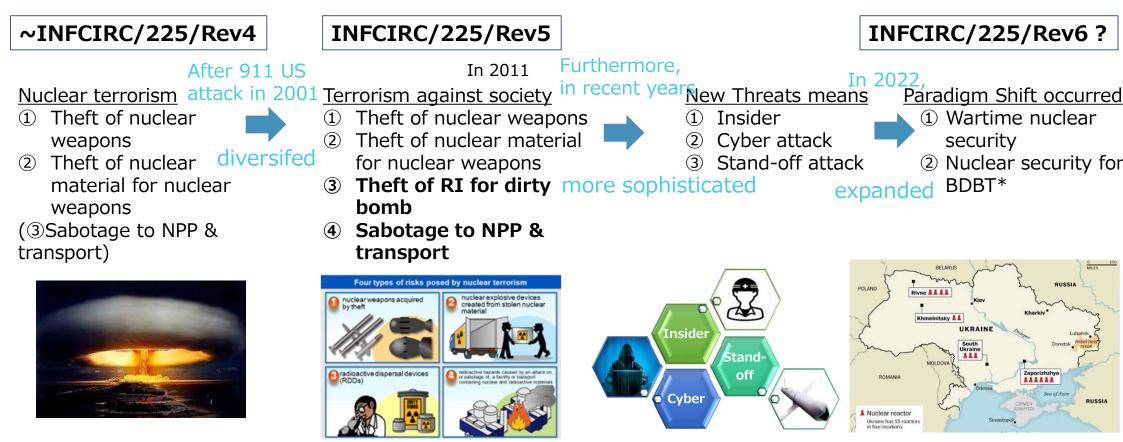
Recent Research Topics

- Nuclear Security (Detection of insider, Cyber-attack, BDBT countermeasure)
- Nuclear Power Plant Maintenance Technology by AI.
- Medical Imaging Technology of Lung Tumor by AI

1. Introduction

(1) Ever-changing nuclear security threats

Nuclear security threats are ongoing and continue to change even nowadays



The Zaporizhia nuclear power plant in Ukraine was occupied by Russian forces

4

(2) Why "detection" should be focused on ?

Deterrence \rightarrow Detection \rightarrow

Four stages of **Physical Protection** (PP):

make the enemy malicious give up behavior

detection

earning time (police, military) •

- In these, detection is the **bottle-**• neck of PP because delay and response do not work if detection fails.
- **Enhanced detection** is critical for physical protection against 'new threats' to work
- Then, how can we detect the "new" threats?

(1) Against Insider

*1: Incident and Trafficking

*2: Central Alarm Station

Database by IAEA

- Insider has free access, so deterrence is invalid.
- ➢ ITDB report^{*1}: About 100 incidents/year, most of them are by insiders
- > Now, huge numbers of surveillance camera are monitored and observed by human eye in CAS*2
- \succ It is classical and vulnerable.
- > New technology to help detecting malicious behavior as a primely screening is necessary.
- Images are the form that contains the most information about "human behavior", \Rightarrow detection using "image" was developed.

(2) Against Cyber attack

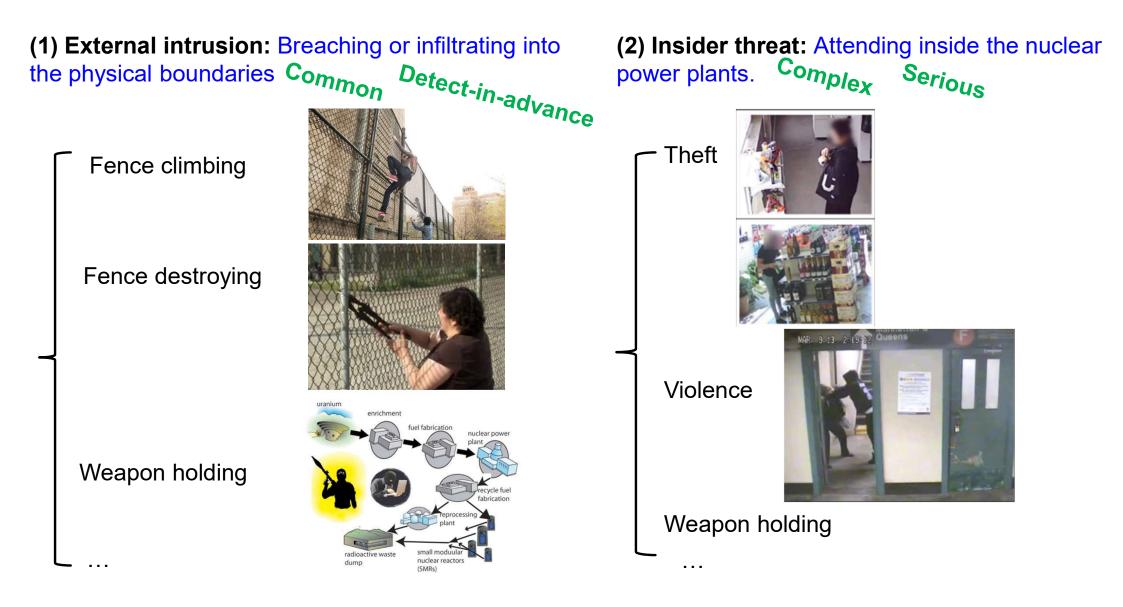
- \succ Cyber space : network \rightarrow
- control \rightarrow physical layers
- NW traffic and server activity on NW layer.
- The order of investigation: equipment \rightarrow control \rightarrow cyber. Needs a half day.
- Early detection targeting cvber attack on the physical layer is necessary.¹

(3) Against Stand-off

- Long-range attacks outside monitoring areas
- \succ Current: Monitoring mainly \succ One of the effective means = earning time until Force arrives
 - \succ Early detection is the key to earning time
 - Detection of "human behavior" \Rightarrow "image"

Neutralization by force

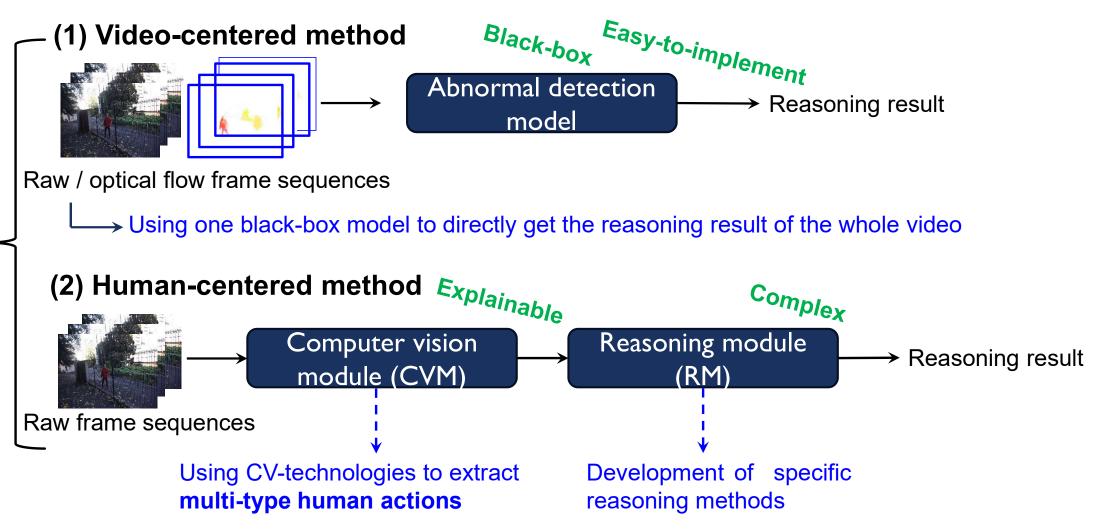
(3) Detection of Malicious Action



6

2. Methods for detection of malicious actions

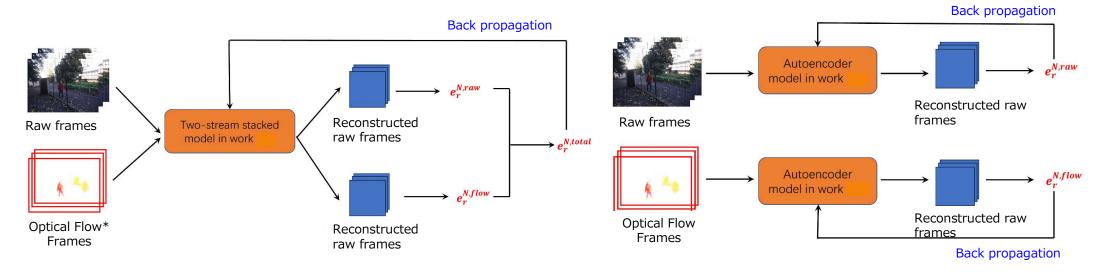
could be divided into two : video-centered and human-centered



(1) Video-centered method: Label-specific method

1) Single-stream: A two-stream stacked model is trained for each label-specific branch

2) Double-stream: Two sub-autoencoder models are separately trained

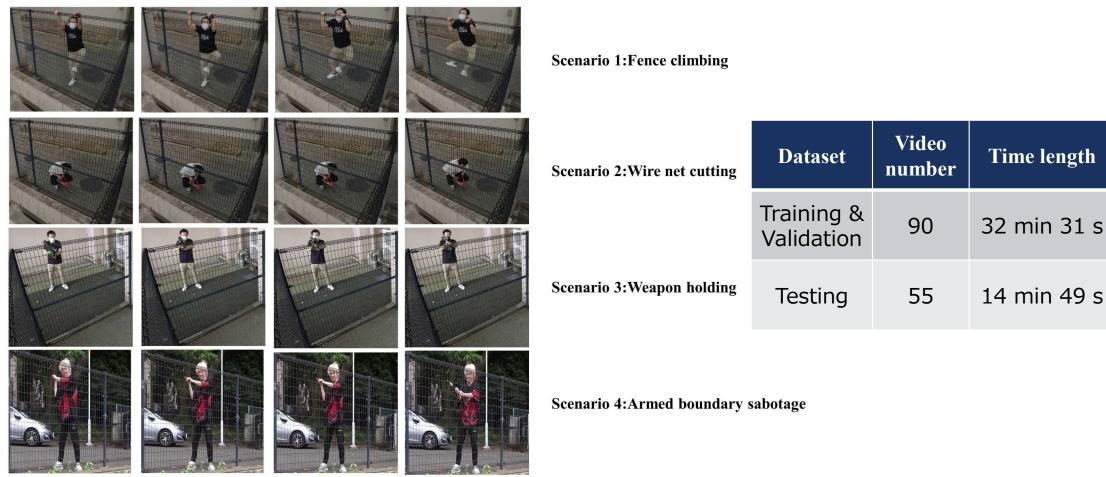


Deep learning models were trained to output high e_r (=label) for Raw frames and optical flows with abnormal behavior.

*Optical Flow : Movement vector of the pixel that changed

(1) Video-centered method: Label-specific method

Experiment & results



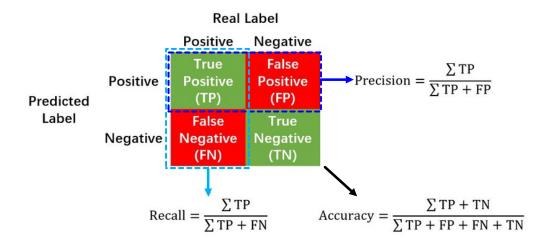
Self-collected dataset: 4 abnormal scenarios + normal status

9

(1) Video-centered method: Label-specific method

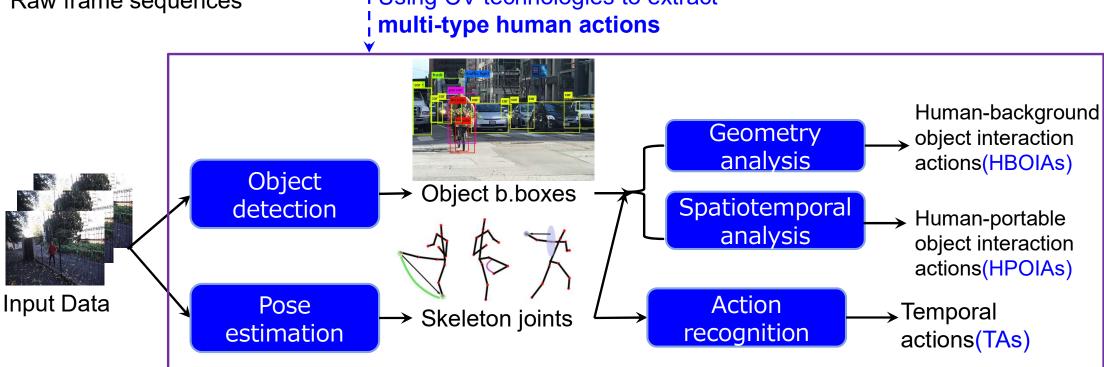
Experiment & results

Method	Threshold	Precision	Recall	Accuracy	Supplement
Traditional	1e-1	0	0	0.5273	All normal
	1e-2	0	0	0.5273	All normal
	1e-3	0	0	0.5273	All normal
	1e-4	0.4727	1	0.4727	All abnormal
	1e-5	0.4727	1	0.4727	All abnormal
	1e-6	0.4727	1	0.4727	All abnormal
One-stream (Proposed)		0.7222	1	0.8182	—
Two-stream (Proposed)		0.7500	0.9231	0.8182	—



Our proposed method could solve the problems better than the traditional models.

(2) Human-centered method ↓ Computer vision module (CVM) Reasoning module (RM) Using CV-technologies to extract



CVM includes 5 sub-calculation processes, while the output contains three types of human actions. However, the development of novel explainable reasoning methods for RM is more significant.

Reasoning

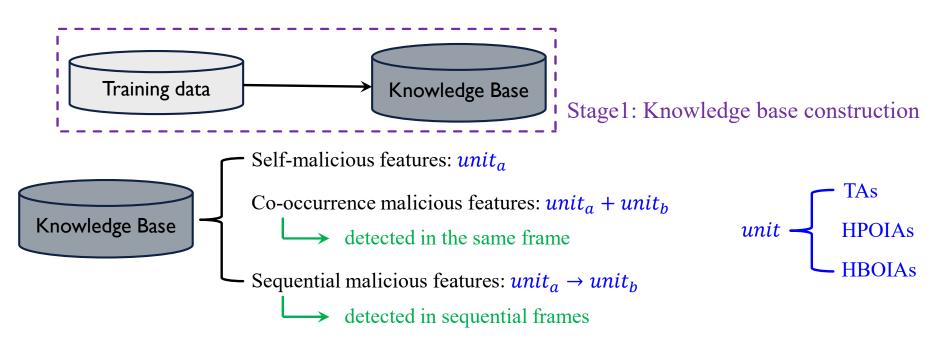
result



Stage2: Reasoning

--->Retrieving the existence of extracted knowledge units on knowledge base

(2-1) Data-based reasoning method



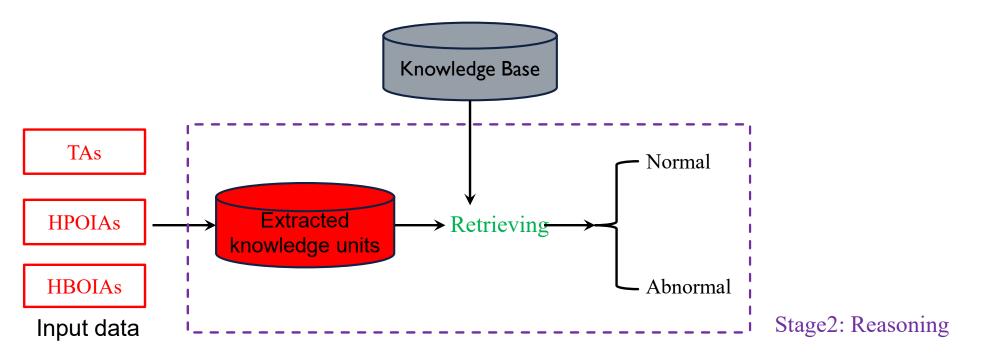
(1) For all the candidate malicious features, they should be judged:

$$\frac{n_{self}^{malicious}}{n_{self}^{total}} = 1 \qquad \frac{n_{co}^{malicious}}{n_{co}^{total}} \ge \alpha_1 \qquad \frac{n_{sequential}^{malicious}}{n_{sequential}^{total}} \ge \alpha_2$$

(2) Besides, there is also filtering process:

For $feature_{co} = unit_a + unit_b$, if $unit_a / unit_b$ belongs to self-malicious feature, then delete $feature_{co}$ Similar for $feature_{sequential}$

(2-1) Data-based reasoning method

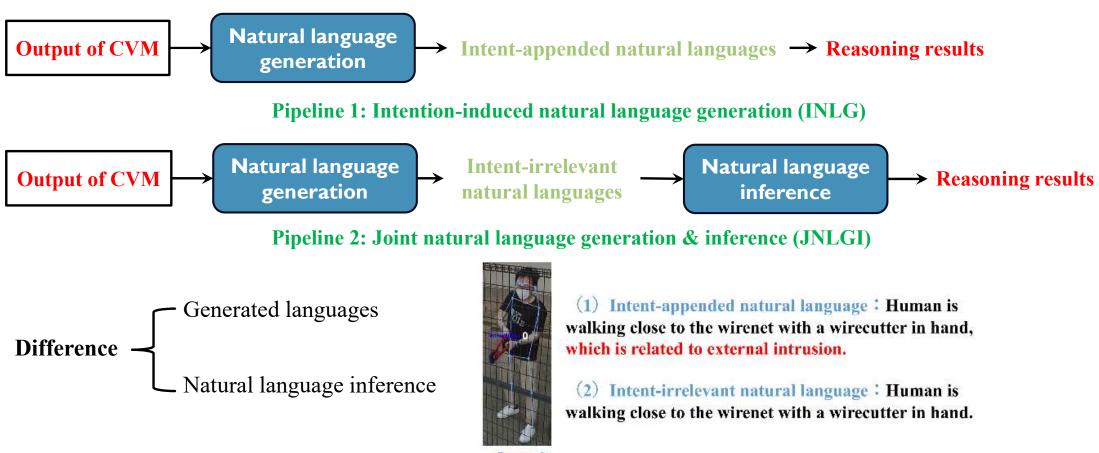


After knowledge base is constructed, the reasoning stage is relatively easy

- (1) Any element in extracted knowledge units exists in knowledge base \rightarrow Abnormal

- (2) Otherwise \rightarrow Normal

Essence: CV + NLP, imitating the function of language center



15

Scenario

(2-2) Language-based reasoning method

Model1: Natural language generation

Table 1. An E2E data instance. The meaning representation appears in the dataset once for each reference sentence.

Meaning Representation	References
name[The Wrestlers], eatType[coffe shop], food[Indian] priceRange[less than L20] area[city centre] familyFriendly[yes] near[Raja Indian Cuisine]	Indian food meets coffee shop at The Wrestlers located in the city centre near Raja Indian Cuisine. This shop is family friendly and priced at less than 20 pounds. Near Raja Indian Cuisine, The Wrestlers provides the atmosphere of a coffee shop with Indian food. At less than 20 pounds, it provides a family friendly setting for its customers right in the city centre.
	The Wrestlers is a coffee shop providing Indian food in the less than L20 price range. It is located in the city centre. It is near Raja Indian Cuisine.

TA[*TA-type*]

Output data: Generated languages

[1] Bonetta, G., Roberti, M., Cancelliere, R., Gallinari, P., 2021. The rare word issue in natural language generation: a character-based solution. Informatics 8, 20.

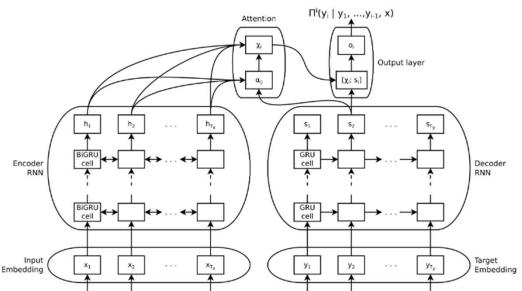
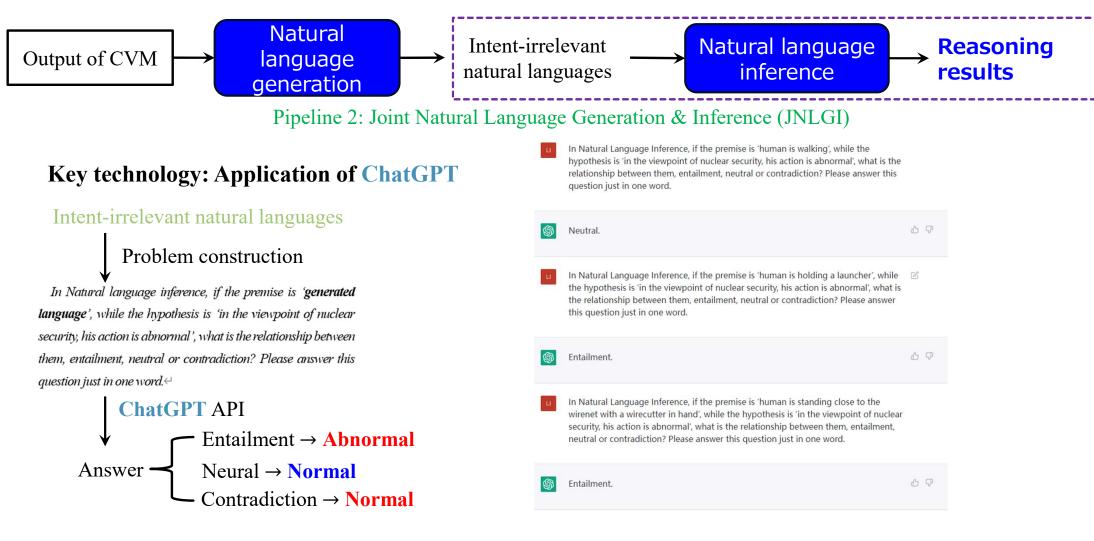


Figure 1. Encoder-decoder with attention model.

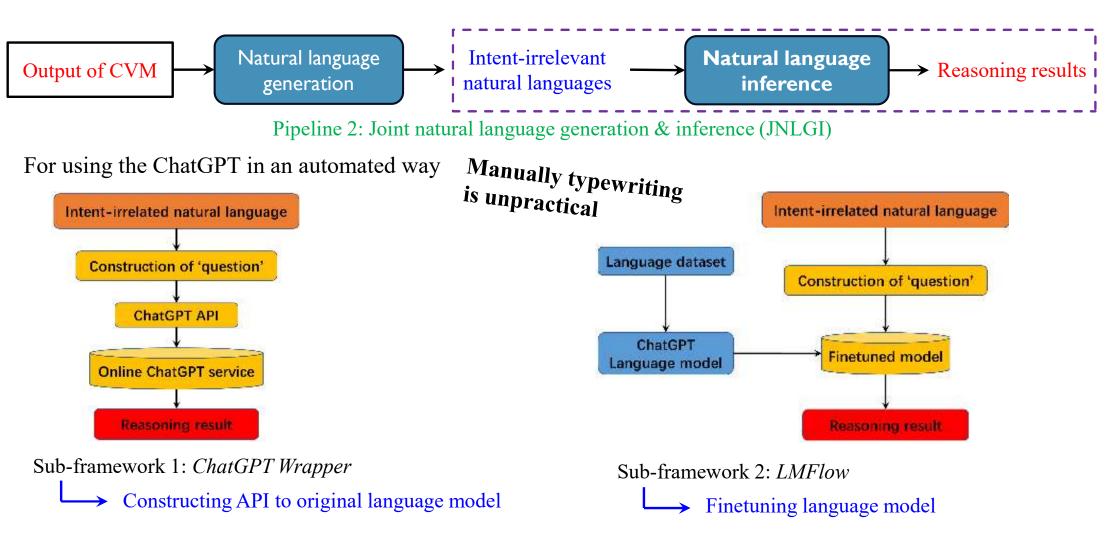
Calculation model—EDACS [1]

(2-2) Language-based reasoning method

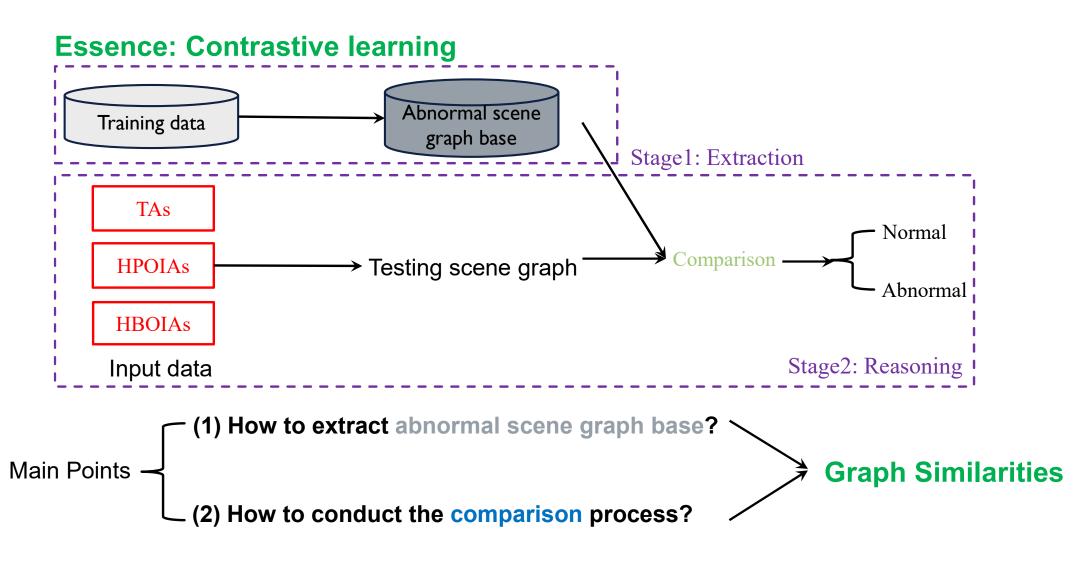
Model2: Natural language inference

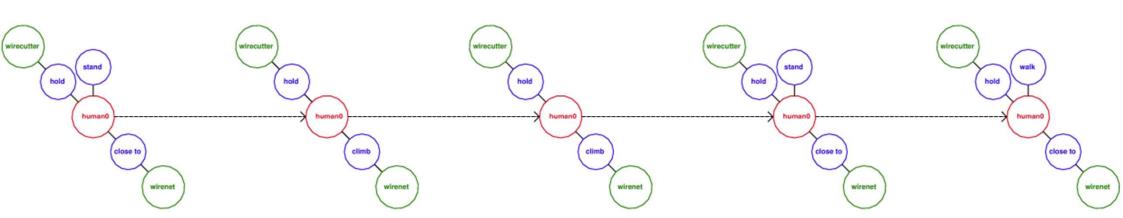


Model2: Natural language inference

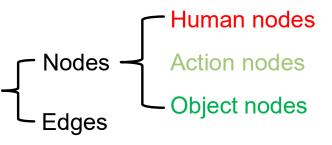


(2-3) Graph-based reasoning method



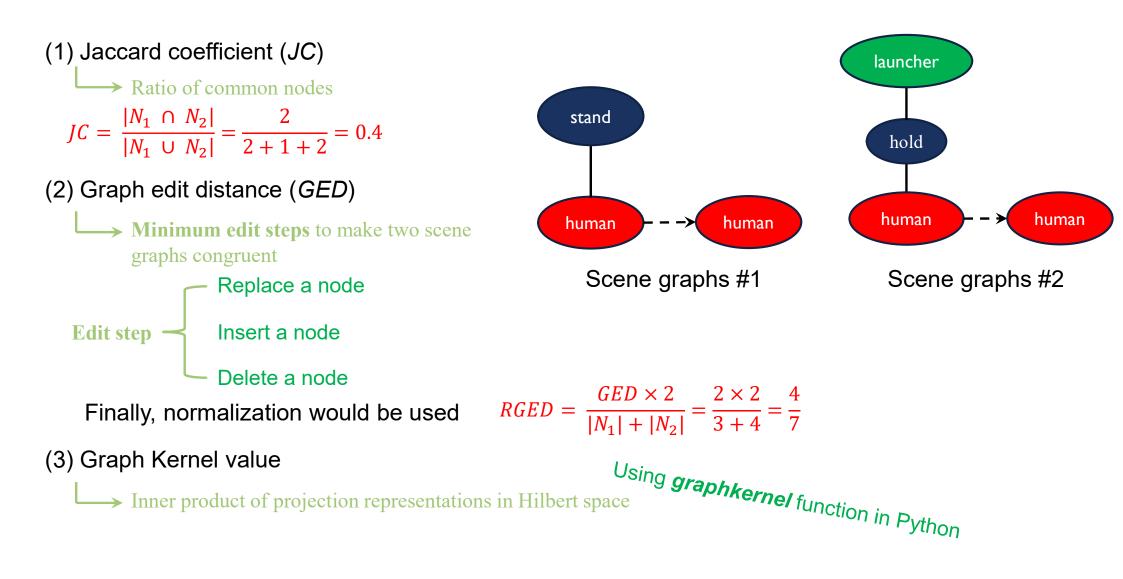


For scene graphs:

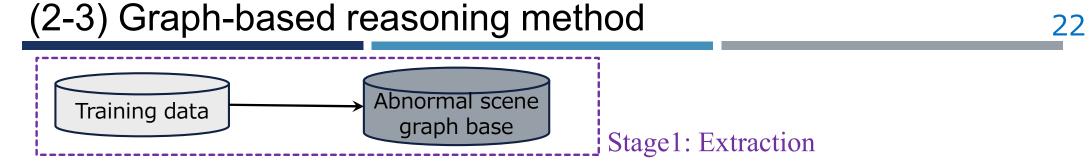


20

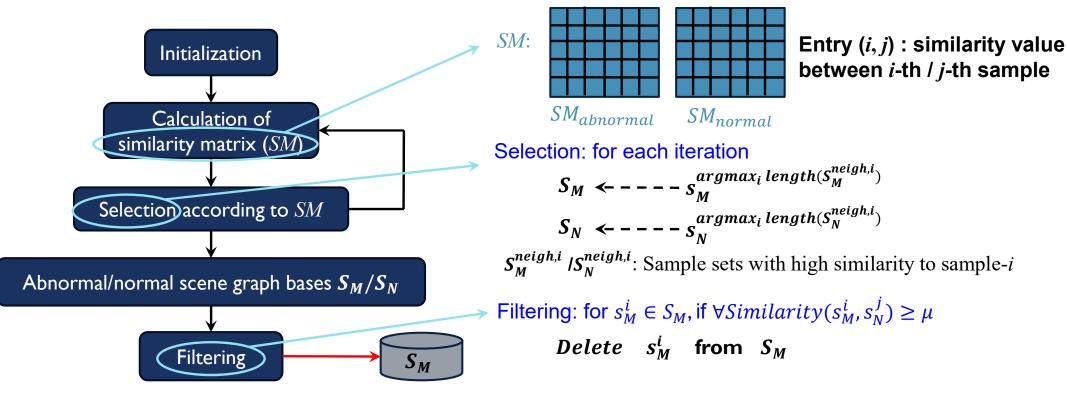
(2-3) Graph-based reasoning method

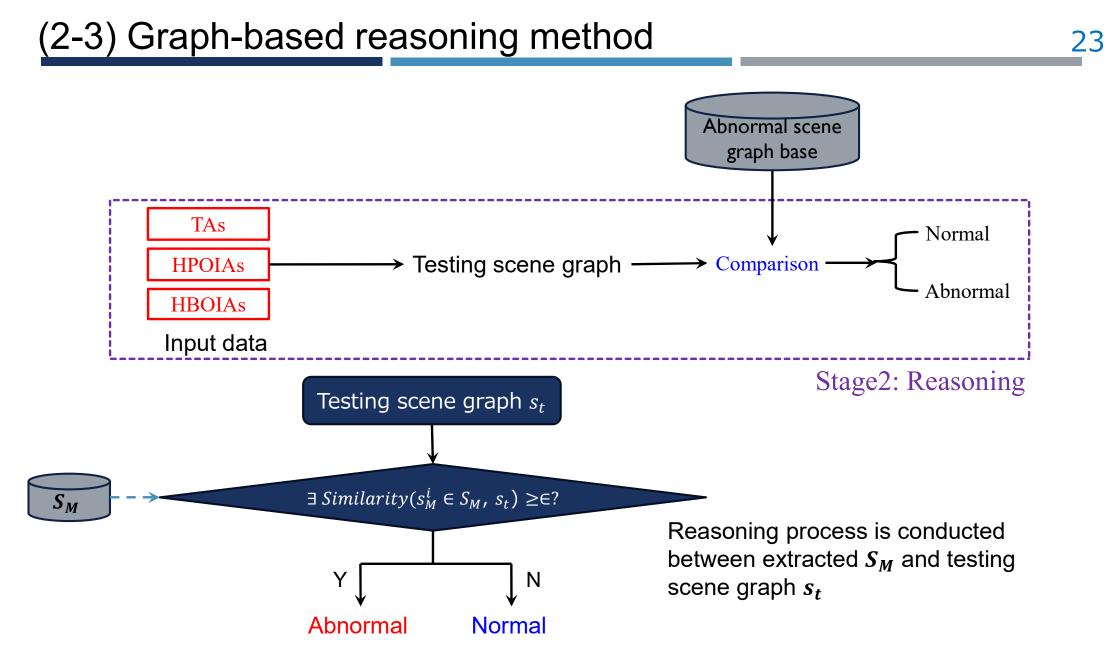


21



Objective: Extracting the abnormal scene graph base (typical abnormal samples) Method: Clustering (DBSCAN)





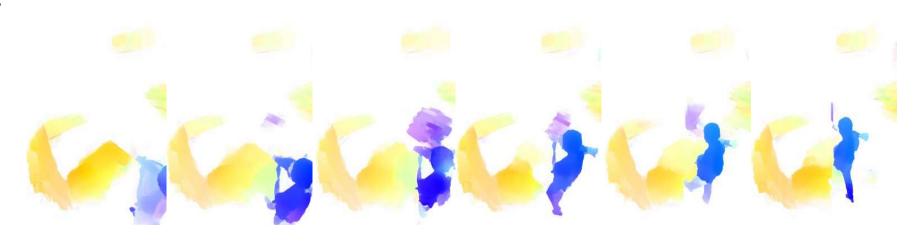
(1) Example of detection results by video-centered method

Examples of successfully detected anomalies

She holds a rocket launcher and detected as malicious.

Raw Frames

Optical Flow Frames



(1) Example of detection results by video-centered method

Examples of successfully detected anomalies

She climbs the wirenet !!

25

(1) Example of detection results by video-centered method

Example of false detected.

She is just walking but detected as malicious.

Raw Frames

(1) Example of detection results by video-centered method

Example of missing of abnormality

He is **cutting** the wirenet !!

(2) Example of detection results by human-centered method

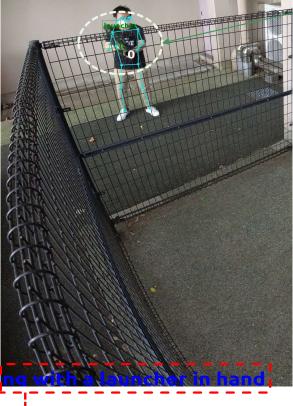
Examples of successfully detected anomalies

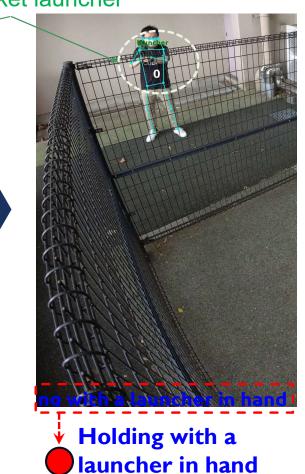
He climbs the wirenet !!

(2) Example of detection results by human-centered method

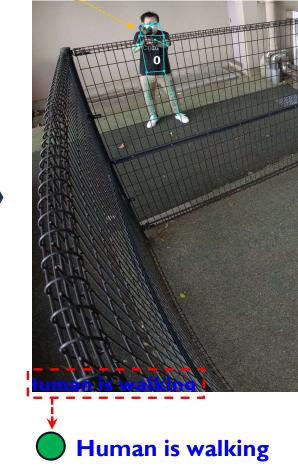
Example of missing of abnormality in a few frames

He is holding a rocket launcher





But in the next frame, missing the rocket launcher



3. Experimental results of Human-centered method³⁰

(3) Comparison of video-centered and Human-centered method:

Series	Method	Precision	Recall
Video-centered	One-stream	0.7222	1.0000
	Two-stream	0.7500	0.9231
Human-centered	(Data-based)	0.7632	1.0000
	INLG	0.7892	1.0000
	JNLGI + LMFlow	0.7994	0.9616
	Graph-based with JC	0.4737	0.4737
	Graph-based with GED	0.5152	0.8947
	Graph-based with GK	0.5135	1.0000

- For more higher accuracy, plenty number of dataset for training is necessary.
- Difficult to obtain the plenty of dataset just by shooting videos.

4. GTAutoAct

It is our original framework designed to automatically generate datasets for malicious action recognition tasks.

- Rotation-orientated 3D human motion representation system.
- Coordinate
 transformation.
- Dynamic skeletal interpolation
- Environmental customization
- Character customization
- Map customization

5. Conclusion

- We developed **several AI model** for malicious action detection for nuclear security.
 - Video-centered method is relatively poorer than humancentered methods.
 - Language-based reasoning methods outperform others.
 - The finetune process for GPT-model is necessary.
 - Graph-based reasoning method still need to be advanced.
 - Present our task is more detailing with high accuracy.
- For the higher accuracy, we developed the **GTAutoAct**
 - GTAutoAct is the framework to create the database of video of malicious actions.
 - It has several advantages than other databases.

Thank you for your kind attention.

LI, Zhan, D2 Student

SONG, Xingyu, M2 Student

Department of Nuclear Engineering and Management, School of Engineering, the University of Tokyo