

FINAL DISPOSAL OF DISUSED SEALED RADIOACTIVE SOURCES IN FRANCE: OPERATION AND POST-CLOSURE PHASE PROTECTION @ CSA & CIGEO

Jérôme ROBIN

Workshop on end-of-life management in support of radiological security and technology transition 28-30 March 2023
Aix en Provence, France

SRS manufacturer/supplier/distributor in France

Last french manufacturer (only low activity SRS)

Former major manufacturers/suppliers

Last SRS supplied in 2006 (only return and conditionning now)

All other SRS distributed today in France are imported (and, normally, re-exported)

Regulatory Framework in France

National SRS inventory kept by import/export, distribution, return, ...

Supplier/manufacturer distributing in France have to : provide a return service / recycle / manage disposal

Environment regulation

DSRS considered as a waste when the decision of its disposal is made

- Supplier/manufacturer becomes a waste producer responsible for characterization, conditionning, cost of handling + disposal
- No specific regulation for DSRS compared to other radioactive waste (disposal limited to waste with french origin)

Andra's status and purposes

Status:

- governmental agency operating under the auspices of the Minister Of Energy, Research and the Environment
- o independent from radioactive waste producers

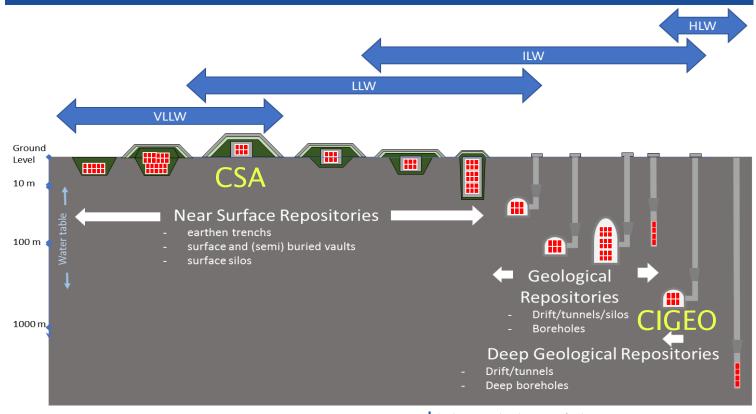
Purposes:

- Studying and designing disposal facilities for waste with no long-term management solution available
- Operating existing facilities
- Managing radioactive waste in France and ensuring the safety of current and future generations

Protection during all life phases of the facility: operation and post-closure

Protection objectives broken down into 2 protection functions

- Isolate wastes from human beings and environment for the time necessary for their decay
 - SL ~300 years, LL > 10,000 years
- Limit the transfer of radionuclides and toxic chemicals to the biosphere


Principle of defense in depth

 Ensure that the failure of the safety functions of one of the barriers is compensated by the safety functions of other barriers

Disposal safety concepts vs waste category

(mainly exploitation wastes from Nuclear Power Plants)

of the capacity used at end 2022

CAPACITY AUTHORIZED m³

ANDRA

- Dismantling of devices in hot cells by CEA/CisBio
- 2. Sources collected in stainless capsules
- 3. Conditioning in a disused transport package for radiological shielding (< 20 μ Sv/h at contact to enable human handling / conditioning /disposal operation on CSA)
- 4. Over-conditioning in a type B transport package (Manon) for ADR regulation

This document is the sole property of Andra.
It cannot be reproduced or communicated without its prior permission.

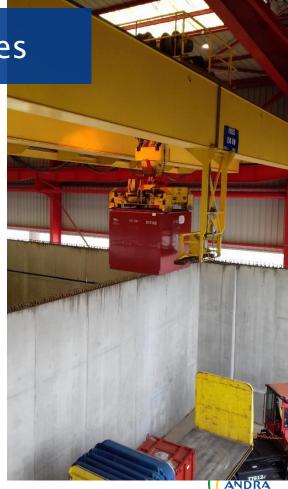
SV69: conditioning operations (08/2019)

SV69 : conditioning operations (08/2019)

This document is the sole property of Andra. It cannot be reproduced or communicated without its prior permission.

SV69: conditioning operations (08/2019)

Injection of 5 m³ metallic boxes



ANDRA

Disposal vaults for metallic waste packages

CSA: operation and post-closure phase protection

Compared to other radioactive waste, DSRS present two specificities for disposal safety

During operation phase:

 Risk of "hot points" relatively to exposure in case of accidental situations (fall)

2. During post-closure phase:

- Risk of recovery in case of inadvertent human intrusion
 - Sources are considered attractive and durable

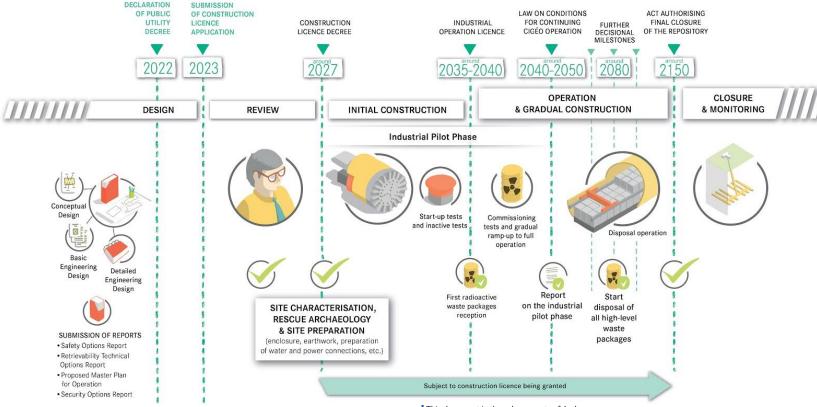
Inadvertent human intrusion in the repository after loss of memory Source recovery Scenarios Take in pocket Use as a trinket Destroy Ingest Consistency of scenarios related to source dimensions Source activity limit at recovery time CSA: decay 300 v LAS: Source activity limit at disposal time

CSA: DSRS main acceptance criteria

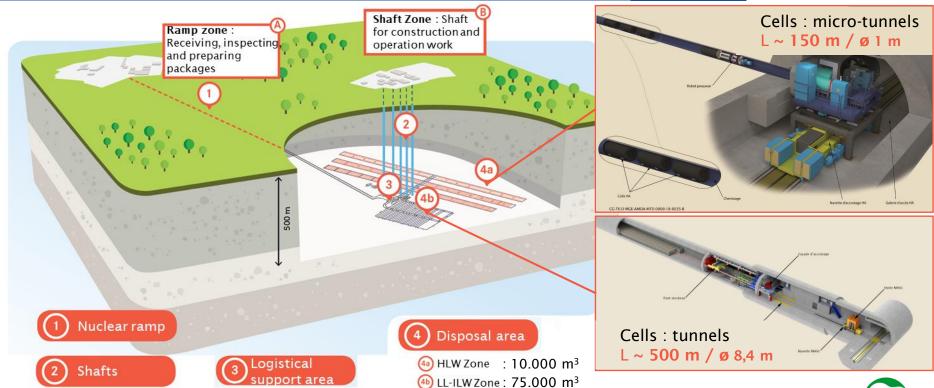
- Half-life ≤ 30 years
 - Operation safety: package activity ≤ 270 TBq
 - Post-closure safety: source activity ≤ RN-dependant limits (LAS)
- Half-life $\leq 5,27$ years (60 Co): no LAS (cat 1&2 sources after decay)

	Half life	Small size		Mediun	n size	Large size	
Rn	(y)	LAS (Bq)	Main scenario	LAS (Bq)	Main scenario	LAS (Bq)	Main scenario
¹³³ Ba	11	2,55.10 ¹³	Ingestion	6,79.10 ¹³	Pocket	6,78.1014	Destruction
¹⁵² Eu	13	1,36.1011	Ingestion	1,49.1011	Pocket	1,49.1011	Destruction
⁹⁰ Sr	29	8.18 10 ⁶	Pocket	8.18 10 ⁶	Pocket	8.16 10 ⁷	Destruction
¹³⁷ Cs	30	2.1910 ⁷	Pocket	2.19 10 ⁷	Pocket	2.19 10 ⁸	Destruction

CSA: CisBio waste packages impact on radiological capacity @ 01/01/2023

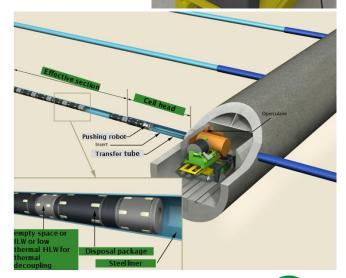

- Number of waste packages @ CSA: 423 565
 - Total activity in Co60 : 7 956 TBq
 - Radiological capacity in Co60: 400 000 TBq

- For 32 CisBio DSRS waste packages (19 SV69, 7 SV34, 1 OTER and 5 TWB)
 - Total activity of 4 700 TBq in Co60
 - 59% of Co60 total activity @ CSA
 - ~1% of CSA Co60 radiological capacity



CIGEO: major milestones

CIGEO: safety disposal of LL-IL&HL Wastes



CIGEO: operation phase protection

- DSRS packages managed like other irradiating waste packages
 - CSDC dose rate ~15 Sv/h (after 10 years of decay/cooling)
 - CSDV dose rate ~240 Sv/h (after 60 years of decay/cooling)
- Automated process, few human interventions
 - Remote control, pushing robot
- Safety of handling operations
 - Shuttle on rails, transfer shielded cask, funicular, ...

CIGEO: post-closure phase protection

Disposal depth ~ 500 m

- Recovery of DSRS is unlikely
- No limit criteria for DSRS activity

DSRS packages characteristics are included in the set of other waste packages

No specific design or criteria for the disposal of DSRS packages in CIGEO

CIGEO: examples of DSRS packages

CIGEO ILW (eventually LL-LLW repository)

For low thermal DSRS not allowed at CSA

- Ex: ²³⁹Pu, ²⁴¹Am, ²²⁶Ra, smoke detectors sources, neutron sources, RTG, ...
- Sources collected in stainless boxes
- « Multi-purpose » 870 L cemented package designed for both CIGEO ILW quarter or LL-LLW repository
- o Adapted for devices which cannot be dismantled (Alcyon, RTG, ...)

CIGEO HLW

For high thermal DSRS

- o Ex: 137Cs HL sources
- Sources collected in stainless boxes
- 200 L welded package designed for CIGEO HLW quarter

National Plan on Management of Radioactive Materials and Waste (PNGMDR)

PNGMDR's requirements on DSRS management:

- Complete inventory → by Andra before 31/12/2024
 - > specify for each family of sealed sources the associated management routes, the entities involved and the difficulties encountered, in conjunction with their holders
 - > all DSRS that do not comply with the acceptance specifications in force at Cires (VLLW) or CSA (SL-LL&ILW) disposal facilities are included in CIGEO inventory (ILW/HLW)
 - > long lived RN in DSRS are flagged for deep geological disposal
- Specify the meaning of principle and implementation methods of taking back used sealed sources "as a last resort" → PNGMDR working group (2023-2026)
 - > enable the operational implementation of the obligation to take back DSRS defined in the law
- Case of DSRS is considered in the preparation of acceptance specifications for packages in planned disposal facilities for LL-LL&IL or HL wastes

Inventory forecast of DSRS for a decade (2019)

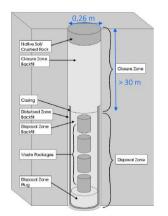
Wastes	Type of packages	Number of packages			Volume	Disposal	Disposal
wastes	Type of packages	Stock	Traffic (10 years)	Total	(m³)	routes	capacity (m³)
SL-LL&IL	Package 5 m ³	31	21	52	265	CSA	1 000 000
LL-LL or IL	Package 870 L	78	61	169	121	CIGEO	75 000
	CSM packages	41	0	41	123		
LL-HL CDT 175 L		6	1	7	1,2		10 000

In France, repositories for radiaoctive waste, in operation or planned, are sufficient for the disposal of DSRS

- > Very small volumes compared to other radioactive wastes
- ➤ No need of specific repository for DSRS in France
 - Strategy adapted to an electro-nuclear country.
 - Other strategies exist in different countries.

International management - AIEA recommendations

In non-electro-nuclear countries:


- Regulatory Framework is applied: return of DSRS to native country
- Safety disposal option privileged : boreholes

- Borehole Disposal of Spent Sources (BOSS) concept developped in South Africa
- Safety disposal concept privileged by AIEA

Case of Saudi Arabia

- Inventory of DSRS comprising cat. 1 sources (RTG type)
- Andra's proposition :
 - Subsurface disposal (~30 m depth) for cat. 3, 4 and 5 sources
 - temporary storage for cat. 1 and 2 sources while waiting for the development of a deep geological facility necessary for nuclear spent fuel management

Speaker questions

What is the funding for disposal facilities in France?

- CIGEO project is funded by the three main entities of the nuclear power sector (EDF, CEA and Orano) from a tax allocated to research and a special contribution for design studies of facilities and preliminary works.
- CSA is funded mainly by radioactive producers on a commercial basis for waste packages delivered and disposed of.

What is the cost of the disposal of a waste package?

- CSA: 4 000 € / m³
- CIGEO (estimation): ~250 000 € / m³

